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ABSTACT

The plane strain problem of a step lo&d mouing with uniform superseismic

velocity V > Cp on the surface of a half-space is considered for an elastic-

plastic material obeying the von Mises yield condition.

Using dimensional analysis the governing quasi-linear partial differential

equations are converted into ordinary norlinear differential ones which are solved

numerically using a digital computer. To overcom computing difficulties asymp-

totic solutions are derived in the vicinity of a singular point of the differ-

ential equations.

Numerical results are presented for a range of selected values of the

PO
significant ncndimensional parameters, i.e. of the surface load of Poisson's

Vratio V and of the velocity ratio _'-p

I,



TABLE OF CONrEIrS

List of Symbols . .. . . . . . ... . .. . . . ii

I Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. . .. 1

II Formulation of the Basic Equations. . . . . . . . . . . . . .. . 3

1iI Solutions for Individual Regions ... ... . . . . . . . . . . 12

a) Nondissipative Regions ..................... 12

(1) The P-front . . . . . . . . . . . . . . . . . . . . . . 13

(2) The S-front . . . . . . . . & 11 . 0 . . 9 0 * . 0 . a 0 0 * 14

b ) Plastic Regions. . . . . .. . . . . .. . . . . . . . .. .. 14

c) Discontinuities (Plastic Shock Fronts) . . , .. . . . . . .. 17

d) Asymptotic Solutions near Singularities. . . .. # . .. . 18

IV Construction of Solutions ...................... 20

a) Solutions in Range . ... .................. 22

b) Solutions in Range II . . . . . . . ........ 25

c) Alternative Solutions and Considerations of Uniqueness

and Existence o .. . . . . . . . . . ..... 25

V Results and Conclusions ....... ............ ... 28

a) Numerical Results for the Stresses .............. 28

b) Simplified Determination of Velocities and Accelerations . . . . 29

c) Conclusions. . . o . . I 1 . . .0. . .. * . . . .. . . . • 31

Appendix A - Approximate Forms of Equations (111-18-21 and 27) . . . . . 32

Appendix B - Solutions for V= near = S ........... 35

References . o . . . . .. 9 o 9 0 .& 36

Tables . . o . . . . . . . . .. . . . . . . . . . . . 37

Figures . o .9 o . . . . . . . . .. . . . . . . . . .. . . . .. . 53



LIST OF SYMbOLS

a.. 4  unctions defined by Eqs. (A-8) to (A-15).

b 1 4  Functions defined by Eqs. (II-14)-(III-16) and (111-26).

, cS , c Velocity of propagation of elastic P-waves, S-waves and of

inelastic shock fronts, respectively.

F Plastic potential, Eq. (IT-1).

G Shear modulus.

Jl J2 Invariants of stress.

k Yield stress in shear, Eq. (I1-1).

K 2 0 Bulk modulus. f

L > 0 Function related to inelastic behavior, Eq. (II-31).

p(x - Vt) Surface pressure. I
PIC PL ' Po Intensities of step load surface pressure.

s Pincipal stress deviators.

x  , sij Stress deviators with respect to axes x, y, etc.

t Time.

vx ,v y Components of particle velocity in x and y directions,

respectively.

V Velocity.

x, y Cartesian coordinates, Fig. I.

X = sin2 o Nondimensional expression.

2G

, XS  Values of X at P- and S-fronts, rzespectively.

+ .. ondimensional stress variable.si + 82 U

y Angle between the directions of s and of the position ray of

an element, Fig. 3.

Other symbols, which are used in one location only, are defined as they occur.
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A * 0 - 3 Small quantity for purposes of asymptotic expansion.

Aa, Av, AT, etc. Increments of a, v, r, etc. at a front.

a C - Small quantity for purposes of asymptotic expansion.

iJ ) iStrains, strain-rates.

* y -Y Small quantity for purposes of asymptotic expansion.

B Angle defining direction of the principal stress s , Fig. 3.

X > 0 Function related to inelastic behavior, Eq. (11-8).

V Poisson's ratio.

* Vt Variable defined by Eq. (11-16). f
y

p Mass density of medium.

qiJ & ij Stresses, stress rates. I

' , a 2 , a3  Principal stresses.

Shear stress.

Position angle of element, Fig. 14.

'P CPS ) Position of the elastic P- and S and of the inelastic shock

fronts, respectively.

Ci ' 2 ) 3 T4 Limits of inelastic regions.

Differentiation with respect to 4.
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I INTRODUCTION.

The two dimensional problem of the effect of a pressure pulse p(x - Vt)

progressing with the velocity V on the surface of an elastic half-space, Fig. 1,

has been treated by Cole and Huth (1] for a line load and, by superposition, may

be found fcr any other distribution p(x - Vt). Miles (2] has considered the three

dimensional problem of loads with axially symmetric distribution p(r,t) over an

expanding circular area on the surface, Fig. 2. He has demonstrated that the plane

problem [lJ contains the asymptotic solution for the three dimensional problem [2J

in the region near the wave front. The actual solution of the three dimensional

problem would require a great numerical effort which can be avoided, by using the

solution of the plane problem to estimate the effect of circularly expanding

surface loads.

FReal materials can not be expected to be elastic, and solutions of the three
dimensional problem, Fig. 2, foA7 dissipative materials are hopelessly complex.

I However, estimates for the three dimensional case can be made from generalizations

of the problem treated in [lJ for dissipative materials. This has been done for

linearly viscoelastic materials by Sackman [3], and Workman and Bleich [4J, in the

superseismic and subseismic ranges, respectively. Based on a formal solution in

[5) the effect of a step load moving with superseismic velocity is determined in A

the present report for an elastic-plastic material obeying the von Mises yield

condition. The identical problem, for a yield condition suitable for materials

with internal slip subject to Coulomb friction, is concurrently being treated for

publication elsewhere (6].

The yield mechanism in the medium makes the problem nonlinear, such that

superposition is not permitted and each pressure distribution p(x - Vt) poses a

separate problem. The present paper treats the case of a progressing step load
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p(x - Vt) a poH(Vt - x). An approach permitting an approximate solution of the I
important, but very complex case of a decaying surface pressure is discussed in

the Conclusions.

The formulation of the problem in [5] furnishes a set of simultaneous, I

ordinary nonlinear differential equations which are solved numerically by a I
Runge-Kutta forward integration scheme (7] utilizing an IBM 7090. The integration

encounters numerical difficulties near singularities of the system of differential 1
equation. To treat such situations asymptotic expansions were employed, leading

to approximate differential equations which could then be integrated numerically. I

Numerical results for all combinations of the nondimensional parameters

V=0, , 0 ,0.35 and -V 1.25, 1.5, 2.0, 4.o, are given in Tables 1-16 in each
P PO

case for five values of the surface load 7 The coverage of results is extensive

enough to permit interpolation.



II FORMUlATION OF THE BASIC !UATIONS.

Figure 3 indicates the half-space and a system of Cartesian coordinates. The

x-axis is in the direction of motion of the step load, the y- and z-axes are normal

to the surface in and out of the plane of the figure, respectively. The analysis

considers the case of plane strain, ez x 0, when the velocity V of the step load

is superseismic. It is known (8] that the largest wave velocity in an elastic-

plastic material is cp , the velocity of elastic P-waves in the material, so

that the term superseismic means V > cp . Throughout the analysis it is assumed

that the strains and velooitieE are small, so that their higher powers may be

neglected in comparison to linear terms.

To describe the behavior of the elastic-plastic material the plastic potential

is introduced

F k2  (11-1)J2

where J is the invariant

1
J -S S (11-2)

2 2 ij ji

and the value k > 0 is the yield stress in shear.

The behavior of an element of the material is then defined by the statements

which follow.

1. The value of the function F may never be positive

F<o (-3)

2. If, in an element of the material at a given instant,

F < 0

the rates of change in stress and strain are related by the conventional

elastic relations.



3. However, if the yield condition

F= o (1-5)

is satisfied three possibilities exist: a) in the next instant of

time the material may be in a state of plastic deformation; b) it

may be in a state of elastic unloading; c) it may be in a neutral

state.

a) If the material is in a state of plastic deformation

oI

0 (11-6)

the total strain rate will be the sum of an elastic and a

plastic portion

• + to (11-7)
Iii "ij ii

OE

where eli is obtained from the conventional elastic relations,

.while

;P " (11-8) t

ij

X, which must be positive

> 0 (11-9)

is an a priori urnkncwn function of space and time. It is to

be fotud as part of the solution of the prolem,

b) In case of elastic unloading F < 0 holds and the elastic stress-

strain relations apply.

J
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c) In the neutral state F vanishes as in case a, but neither energy

dissipation nor permanent deformation occurs and the elastic

stress-strain relations apply. In the present problem neutral

regions will be encountered in which neither the stress nor the

strain changes, iii E QiJ 0 0.

For the purpose of this paper it is convenient to combine elastic and neutral

regions, jointly to be called "nondissipative", as opposed to plastic regions,

where X > 0, indicating that energy is dissipated. In the nondissipative regions

the changes in stress and strain are governed by the elastic relations, while in

plastic regions, Eqs. (7) and (8) apply. Formally, the equations in nondissipative

regions can therefore be obtained by substitution of X = 0 into the differential

equations derived below for the plastic regions and by replacing the conditions )

F = F - 0 by the inequality (3).

(

Substituting Eqs. (7) and (8) and the elastic stress-strain relations into

2 11 (vij J i)-

the following constitutive equations are obtained for the case of plane strain

1 1-2v V x x;-6 +  T - l + > x - "
FG 6T(l+1VG 1 x b

1 . 1-2 yr-G By ' 6( + ) 1 + % y

1- + +

1 1-2v;
M x +y) -6(2l-,v)G 1 + X(s x+ a)-0

J is the first invariant of stress, sx , Sy and v , vy are, respectively, the

stress deviators, and particle velocity components in the x- and y-directions.
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Further, there are two equations of motion

asX + b 1 bT P"X

Equations (11) and (12) and the respective requirements on F and X complete the

formulation except for initial and boundary conditions.

In plastic regions additional equation F - 0 applies, so that there are a

total of seven relations for the seven unknown quantities sa , Sy ,T Jl ) Vx X

v and ) > 0. In nondissipative regions Eqs. (11), (12) apply, but the function

vanishes identically, 0 * O, while F must satisfy either F < 0, or the two

conditione F = 0, F < 0 simultaneously. In the nondissipative case there are

only six differential equations and six unknown quantities. The complete solution

of the problem is to be obtained from the six differential equations (11), (12)

and the applicable relations on X and F, subject to appropriate boundary or

initial conditions at the surface and at the junctions of the as yet unknown

regions:

1. On the surface, y - 0, a step pressure p = p H(Vt - x) normal to the

surface is applied, so that,

- PO (for Vt > X)

0 (for Vt < X) (1-13)

while

T 0 (II 14)
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2. It is known from a general study of elastic-plastic wave propagation [8] &

that the largest characteristic velocity possible is cp , the velocity S

of elastic P-waves. All stresses and velocities must therefore vanish

outside the wedge formed by the loaded portion of the surface and the
a.

P-front, which is inclined at the angle

C P " s n2G l (I-15)
-in LV J

with the x-axis, Fig. 4.

Because the steady-state problem is considered, stresses and velocities can
S

nct be functions of x and t separately, but must be of the form f(x - Vt). For
t

the step load p -p 0H(Vt - x) dimensional considerations discussed in detail in

[5) require further that the stresses and velocities do not depend on x - Vt and y

separately, but must be solely functions of the combination

x - Vt (11-16) t
y

Instead of using C as variable, the equivalent but more convenient one S

= cot-] t (11-17)

is introduced. The angle ( is shown in Fig. 3.

Noting d e obtains the relations

b Id sin2 d

Ry dy

9 d sin ?T d (11-19)

V d V sin2 d
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Substitution into Eqs. (11), (12) reduces these equations to a set of ordinary

simultaneous differential equations in the single independent variable .

Because of the manner of solution to be employed the unknowns sx I sy mad T

are replaced by three other dependent variables, sI , s2 and 0, y

sx =sGI cos 2  + s2 sin 2 e (11-21)

2
Sy = S2 cos 2 + sI sin 2 e (11-22)

T = (sI - 62) sin e cos 8 (11-23) I
s and s2 are the two prin.ipal stress deviators, while 8 is in the angle between

the direction of sI and the horizontal, Fig. 3- Introducing further the angle y I
between the direction of sI and the position vector, Fig. 3,

Y - G (11-24)

the six differential equations, (11), (12) become finally

s' Cos 2  + s' sin2 0 - (s - s2) 0 sin 28 +1 2 1 2

+ J,1 + L(s C s 8 + s2 sin2 T V x( 1 -5
3(1 5 8 Vy(1-5

sI sin 2  + s' cos 2  + (s - ) 9 sin 28 +
1-2v 2' 2G v

+ 3(i ) 1+ J + L(sl sin2 e +2 Cos2 0) y cot r (1i-26)

1-2v 2G '
+-V 1 = - (vy cot - vx ) (l1-27)

(s- s sin 28 + 2(s1 - s 8 cos 29 + L(sI - 8 sin 28 =

S(V cot -vy) (11-28)
x Y
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t t

s Cos siny+s 2 sin cos - (s !  s2) Cos (y-) +1

+ Ji sin ff -Pv X sin p (11-29)

sI sin e sin y - s Cos Cos y + (s " s )  sin (y ")-1 2

-Jl cos p -V vy sin cp (II-3 O)

Primes indicate differentiation with respect to cp and the function L is related

to M,

L a (11-31)V sin2 (

The function L is subject to the same conditions as X, i.e. L > 0 in plastic

regions, L = 0 elsewhere.

The expression for the plastic potential in these variables is

F =s 2 + 5S s+ s 2 -k 2(11-32)

In plastic regions Eq. (6) requires F = 0, giving the additional differential

equation

I !

(2s1 + s2) sI3 + (s1 + 262) s2 - 0 (11-33)

! t

The unknowns vI and v can be eliminated from Eqs. (25)-(30) without
x y

differentiation. Using the symbol

PV2 sin 2 C(11-34)
X X x(c) - -

the operations

Eq. (40a) , Eq. (25) + Eq. (26) - Eq. (27) (11-35)

Eq. (4Ob) - X Eq. (27) + sin C Eq. (29) - Cos C Eq. (30) (11-36)
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Eq. (40c) = X sin 28 (Eq. (26) - Eq. (25)] + cos 20 Eq. (28) +

+ cos (y -8) Eq. (29) - sin (y - 8) Eq. (30) (11-37) 1

Eq. (40d) = X {cos 28 (Eq. (26) - Eq. (25)] - sin 28 Eq. (28)} +J

+ sin (y -0) Eq. (29) - cos (y - 8) Eq. (30) (11-38) 1

Eq. (40e) = Eq. (33) (11-39)

lead to the following set of five differential equations valid in plastic regions:

1i-2 ,

yi-)0 (sI + s )  sl
1+ 1 2 (-1

2 2 l-2v

sin 2 y cos 2 Y 1-3X (-) - sin 2y 0 s
1+Vi

I n2y sin 2y sin 2y 2X - 1 0 3 1

sin2 y - X X -cos2 Y - cos 2y 0 - X(s1 - s 2 ) (s1 - s2)e

2s1 + s2  sI + 2s2  0 0 0 L

(Mi-40)

The system of equations for nondlssipative regions consists of the first

four Eqs. (40) without the terms containing L, i.e.



'Fl 11
1+v 2

sin 2y sin 2y 2 sin 2y - 2(1-2X)31

si o y - cos 2y 0 (s _s)j

(2lu
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III SOLUTIONS FOR INDIVIDUAL REGIONS.

As a first step towards the construction of overall solutions, expressions

for individual regions must be derived. The latter will be combined in Section ',V

to find the solution for the entire domain.

a) Nondissipative Regions.

Equations (11-41) are linear and homogeneous so that the derivatives

of the stresses n 2 '" and the value (s - s2) e vanish, unless

the coefficient matrix in Eqs. (11-41) is singular, requiring

X(1-2X) (1 + (1-2X)(1-2v)] - 0 (i-])

Equation (1) has two significant roots,

1-%)

XP 1-2 (III-2)

and
1

xs . (111-3)

Substitution of the two roots X and XS into (11-34) furnishes the

two locations

-l Cp (ni-4)
P~~-i T

7c 5 - sin 1 (III-5)

where cp , cS are the velocities of P- and S-waves, respectively. In

all locations 9 - cp or (S the values sI , s; , J1 ' (81 - 82) 0 vanish,

so that in nondissipative regions the stresses must remain constant

except at the locations ef and TS * The latter being the potential

locations of elastic P- and S-shock fronts, respectively, it is knovn

that discontinuities in stresses and velocities may occur at these

locotions and may, therefore, be part of the complete solutions to be

constructed. The following pertinent details will be required subse-

quently.
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(1) The P-front.

Designating the discontinuous changes in the various quantities

at the front by the symbol A, the discontinuities in the stresses

aN O aT z (normal and tangential to the front, respective.y) and

in the component vN of the velocity (normal to the front) are proportional

to MIN

T JvN - P (M11-6)

No other discontinuities can occur in this location.

The changes All and AaT are of course limited by the yield condition

F < 0 which must be satisfied on either side of the front.

In the actual solution a P-front will be encountered only when the

region ahead of the front is stressless and at rest. The normal to the

front is then a principal direction for the stresses behind the front,

so that V - 0 or 2 . Selecting Ol 0 , corresponds to
2

ly (111-7)

The corresponding values of the other quantities of irterest behind

the shock front are

2(l-2v)a1  (l-2v)a1  (l+v)0 1  (
3 ) l 0 3(l-v) ' 2 3(1-v) ' 1 1-V

subject to the limitation

io.,_1 <
jI (1-2-9)

imposed by the yield condition.



(2) The S-front.

At an S-front discontinuities occur only in the shear stress

IN a T = and in the tangential velocity vT . The change in velocity

is proportional to AT

AVT M AT (1I-10)

In addition, the yield condition F < 0 must again be satisfied ahead

of and behind the front.

The relations between ttne state of stress on either side of an

S-front in terms of AT and of the variables sl , s2 , 0 and y can be

obtained in such rouLine manner that only one detail used in Section IV

is presented here.

It is possible for an S-front to occur between two neutral

regions, i.e. regions of constant stress for both of which the yield

condition, F - O, is satisfieti. In this special case the quantities

', ,l' s, and a have no discontinuity at the front, only the direction

of the principal stress changes. The values of the angles , ahead

of and behind the front, respectively, are complementary

U -T- " - Y (III-li)

as shown in Fig. (5).

b) Plastic Regions.

In such regions Eqs. (TI-hO) apply. They are linear and homogeneous
I f

in the values sl , 2 etc., an'. may be satiafied by

l I
l ~2 1 - S - e2) L =0 (111-12)
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However, L - 0 implice X - 0 which violates Eq. (11-9). It follows

that in plastic regions the determinant of Eqs. (11-40) must vanish, giving

the determinantal equation

(s + 2)2 (b + blb3 ) . 0 (111-13)

where

b 1 - 2(1 + (1-2v)(l-2X)] (II-14)

b2 w 0 cos 2y + (1-2X)(1-2v) (111-15)

b 3 m (l+V)(l..2X) -2X (III-16)

and

a1 + 2

If this value is substituted it will be seen that Eq. (13) is a homogeneous

quadratic expression in si .

Due to the vanishing of the determinant only four of the five

Eqs. (ii-4O) are independev. By definition L must not vanish, so thatI p * I U

a 02 'Jl and 0 can always be expressed in terms of L,

(3-0)b4 (01 s LJs =- (IIl- 18)
1 3b2

, (3+0) b4 (81 + L 2() L

2 3b2

sinyb 
(111-20)$ (1-2X) b2  (I-0

3(v b 2 (1 L (111-21)
-y = 2 b42 2+



- 16

Velocities and accelerations may be obtained from the relations

v sin (s + s2) L 1
ivx = 1G2'-- b sin (2y - y) - Zo sin Cp (111-22)

X2G(l 2X) b,2 [ 2  3

'1 - V sin (p (s1 + s2 ) L
v = 21-) -- [b b20 cos (2y - Cp) + 2b 3Cos C (111-23)

V IX = Rsin cP vx  (I-b

= si c (111-25)
y R y

where

b4 = (1+v) coo 2y + OX(l-2v) (111-26)

Since Eq. (13) must remain valid throughout a plastic region, it may

be differentiated with respect to y. This leads to an expression which

contains the first derivatives of the stresses linearly, so that substitution

of Eqs. (18)-(20) furnishes a linear equation for L. Its solution gives L

as a function of 0, y and of the position angle cf,

3b2 (l-2X) ( X sin 2cp (4(1.-2v)(b2 + b3 ) + bl(02+ 2 + 2v)] + 4b2 0 sin 2y sin2 Cp

4 sin2 p (3+0 2)(1-2X) b4 (b2 cos 2y - blOX) + 3bb 3 sin2 2y

(111-27)

The values of the derivatives sI 1 s2 , J, and 0 can be obtained by

substitution of Eq. (27) into Eqs. (18)-(25).

In principle Eqs. (18)-(25) permit the neumrical determination of the

values of stresses and velocities in the interior of a plastic region by

quadratures if the values on one boundary of this region are known. The

starting values must inherently satisfy the yield condition, F = 0, and

the determinantal equation (13). Further, throughout the plastic region,
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L > 0 (111-28)

must be satisfied.

c) Discontinuities (Plastic Shock Fronts).

It is known that in transient problems one, but just one type of plastic

shock front can propagate in the elastic-plastic material considered here [81.

However, such a front can exist only in locations where the normal to the

front i4es in the direction of one of the principal stresses, while the

other two are equal and where the yield condition is satisfied. The velocity

of propagation of the front is

K 
(111-29)

where K = 2(1-v) G is the bulk modulus. The discontinuity is restricted

to the particle velocity vN normal to the front and to the first invariant

J1 " The change AJ1 must have the same sign as J1

Ai > 0 (111-30)
JI

The other conditions stated define the values of y and

-Y 3 (111-31)

A discontinuity traveling in real space with the velocity c, Eq. (29),

can occur in the steady-state problem only iL the LC "-11^

r - sin ( ) (111-32)

The corresponding value of X is

I+V (111-33)

3(1-2v')

The denominator in Eq. (27) vanishes, as expected, for these values of

, and X.
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The possibility of the occurrence of this discontinuity (plastic shock

front) must be considered when constructing the complete solutions in

Section IV. It was actually found that no such shocks occur, except in the
PO

limit, V - However, for large values of the parameter k- defining the
surface load, the solutions come extremely close to the singular values

representing a shock, so that computing difficulties occur.

d) Asymptotic Solutions near Singlarities.

As stated in the previous paragraph numerical difficulties in the

vicinity of C - will make the procedure for integration of Eqs. (18-27)

outlined in subsection b unsuitable if the values of 0 and y are sufficiently :1
close to those for a plastic front, 0=3, Y = -

To establish the behavior of the solution of Eqs. (18-27) in such cases,

let

0 3 +A (I-34)

CPww+ t

where 1, A and # are small quantities. Substitution of Eqs. (34) into the

determinantal equation (13), Eq. (20) for $, and an equation for a ft

obtained from a combination of Eqs. (17), (18) and (19), provides three

simultaneous first order differential equations for the three unknorns

, and L, subject to the inequality L > 0. These three nonlinear

differential equations are of course equivalent to the equations in sub-

section b and no easier to treat. However, A, I and e being small quantities,

approximate equations may be obtained by neglecting higher order terms.
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I Various degrees of approximation are possible depending upon tne number of

I higher order terms of f, A and a which are retained. Appendix A presents

the resulting set of equations when the leading and the next terms in each

j variable are retained. In (5) the comparable set of equations is given when

only leading terms of each unknown are retained. Together with the appropriate

expression for ! j- the approximate equations may be used when integrating in

I the vicinity of Cp.

p 0
To obtain results for high values of the integration of the original

I differential equations (18-27) was stopped when accuracy troubles developed

and the integration was continued using the approximate equations derived in

Appendix A. This process was successful for all numerical cases considered.

j The results obtained in this manner in the vicinity of the singular point approach

simple asymptotic expressions derived in [5] for V * This is shown for typical

I cases in Figs. 15, 17 arid 18 of this reference and provides a check on the results

i of the complicated analysis in Appendix A.

1

For the special case V = S an asymptotic expression valid for cp < %Sa * is

given in Appendix B. As demonstrated on a typical case in the same Appendix, it

is possible to construct solutions for V 1 for high values of by using this

asymptotic solution for t < cS and a numerical integration of the original differ-

- ential equations (18-27) with double precision for c > 'S"
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IV CONSTRUCTION OF SOIUTIONS.

In Section IV a number of partial solutions were obtained from which the

solution of the complete boundary value problem is now to be constructed.

Section III-b gives tne differential equations for the determination of the

stresses and velocities in plastic regions; Section I1-a indicates that all

unknowns in nondissipative regions are constants, except for discontinuities of

a prescribed nature at the locations )S and cp. In addition, as discussed in

Section III-c, a shock front with plastic deformation may occur at the location co

In Section II) boundary conditions and additional requirements, which the

solution must satisfy, were formulated and discussed. Equations (11-13 and 14)

for the prescribed surface load in terms of the variables si I J, and T require

either

Sl + .---- "-po (IV-la)

or
J1(rr)

*(71)ffO (Iv-lb)s2(r') + 3 --- - Po ' O. i-b

A further boundary condition requires that all quantities must vanish for

< cp , Eq. (11-15). This condition, in conjunction with the fact that a

plastic region or a plastic shock can exist only in locations where the yield

condition is satisfied, permits the conclusion that the change in stress from

vanishing values for f < Cp, to nonvanishing values must be nondissipative.

However, in nondissipative regions the stresses are constant, except for dis-

continuities at t a tp or t - 9S . A solution in which plastic deformations

occur at lI can therefore start only in one of the two ways described below.
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Case 1. Discontinuities occur at the P- and S.-fronts, where the discontinuity

at cp satisfies the inequality

' F+) < -(v-2)

while the discontinuity AT at T. is of such magnitude that the yield condition

F [P,+)] .0 (IV-3)

is satisfied. The synbols or indicate approach from above or below,

respectively.

Case 2. A discontinuity occurs at the P-front, described by Eqs. (111-7,8),

so that the yield condition is satisfied for c - ,+) i.e.

0) 4~1- Zll)jv (IV-14)

In Case 1, plasticity may occur only in locations T > (PS . while,

in Case 2 it may occur already for cp < p < cS

As a next step in the search for solutions it is helpful to consider the]Po
latter as function of the nondimensional surface pressure y , while Poisson's

ratio V and the velocity V are considered constant. For sufficiently small
P P

values of - the solution must be entirely elastic, but as y increases plastic
kc

regions must occur and should form a gradually changing pattern. Based on [1]
P r'

one can find the limiting value f , above which entirely elastic solutions are

no longer possible.

The elastic solution, shown in Fig. 6, has two discontinuities at (p and iS

with regions of constant stress between np wd ps and between (S and the loaded

surface p = 17, Depending on the values of the parameters V and , the yield

condition may be reached in either of the two regions resulting in different
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expression for !-• If the region t > cS controls,k

PE 3N2  2 (IV-5a)I
Pk- " 3N2 - 3N con s + (l-v+v 2) COB2 2s-

where

N co +s +(-2v) coB 2%s - pp)] (Tv-5b)

while

p E e 2( IV-6 )k 2 2 j2(i-6
(1-2v) cos 2CpI

if the region c < cS controls. The decision which region controls can be made

by comparing the values given by Eqs. 0a) and (6), the smaller one controlling.

Designating as Range I the combination of values V and L where Eq. ea) controls,

one finds that in this range

v( ) -4 '3T -29) (I-7)
> -) (1-3v)

The remainder of the range will be designated as Range II. Both ranges are shown

in Fig. 7. The limiting values !E are shown in Fig. 8 for several values of V as

function of .

cPE

If the surface load exceeds the value E--by a sufficiently small amount the

elastic-plastic solution should differ only slightly from the elastic one, which

can be used to predict the character of the solution. Because the situations

differ, the Ranges I and II must be discussed separately.

a) Solutions in REge I.

In tis asePE
In this case - is given by Eq. (54 and the yield stress in the elastic

solution is reached only in the region cp > *pS The discontinuity a1 satisfies
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Ithen the inequality (2) and continuity requires that this inequality will still
PL P0  PEs lit l ~

apply for a range of values !- -!SR , where pL is a limiting value, not yet

known. In this range the start of the solutions will be according to Case 1 and

I plasticity can therefore occur only in the region r > % .

Using an indirect approach, the determination of plastic solutions for valuesI __Po PL
-- < ! begins with the selection of a pair of starting values 0 I and AT near those

for the limiting elastic case. Experience and continuity considerations indicate

that this value a1 should be larger than "I corresponding to pE given by Eq. (5e).

I A plastic region can start only at a point p1 which is a root of Eq. (111-13).

I Inequalities derived in 15) indicate that, for a given state of stress, this

equation has only two roots in the meaningful range of Q, namely < <T, subject

to the following bounds:

I Starting integration at cp = CB the solution in the interior of the plastic region

is determined from Eqs. IIi-18 to 27). The plastic region can be extended as

I long as Eq. (111-27) gives values L > 0, but the plastic region may be terminated

at will at any earlier location c2 . The solution for C > cp2 is then nondissipative,

i.e. all quantities are constant. If, therefore, in the process of forward in-

jtegration a value * is encountered which satisfies Eqn. (1), the plastic region
p

is terminated and a solution for one value of the surface pressure - has been

obtained. Repeating this process with gradully increasing starting values 01

1the whole spectrum of values satisfying the inequality (2) can be explored.

Solutions, if any, obtained in this manner will have the configuration shown in

Fig. 9, i.e. discontinuities at p and eS and a plastic region > > fi > (f

There will be an elastic region of constant stress from rp to cS and two neutral

regions to either side of the plastic one.
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One can proceed in a similar manner when the solution begins at t = (p. as

indicated in Case 2. Stearting with a value a, according to Eq. (3), the yield

condition is satisfied for any value e > (p , so that the determinantal equation

(111-13) according to Eqs. (8) row has two roots, Ti > cs , at which plastic

regions may start. Both roots must be explored. If the larger one, C > CS '

leads to a solution, it has a configuration as shown in Fig. lOa. Starting,

alternatively, with the smaller root, tp < Ci = -A <  S ' several possibilities

are to be investigated. The integration may be continued as long as L > 0 to see

if a value 0 or can be reached. The configuration of such a solution, if

any, is shown in Fig. lob. Alternatively, the plastic region can be terminated

at will at a point f2 <9s where 0Q, 1 . The plastic region will then be

followed by a neutral one for values c > ;2 * The inequalities (8) on the roots

of Eq. (111-13) indicate that there is just one more root C3 > pS , when a second

plastic region can begin. Starting integration at this point may lead to a

terminal location , where 0 0 or 2 . The configuration of such a solution,

if any, Fig. 10c, contains a P-front and two plastic regions, separated by three

neutral regions. There are, however, further possibilities. The neutral region

y > c2 which follows the first plast c one may be terminated at fS by an elastic

change in shear, AT, which is restricted in sign and intensity by the yield

condition. If AT is such that F [+) <0, the region > becomes elastic.

This might permit values 0) 0! at the surface, the corresponding solution2

having the configuration of Fig. 11. Finally, the important case must be

considered where the value of A is such that F [ f+)] vanishes again, a situation

discussed in Section III-a-2. In the latter case there is again a neutral region

for c > S which can be followed by a plastic region because Eq. (111-13) has

a root p3 > 9S giving a starting location. The configuration of a solution

obtained in this manner is shown in Fig. 12.
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b) Solutions in Range II.

PE Po P'E

In this range !E is given by Eq. (6) so that in the limiting case - PE

yield is just reached in the region Cp < < S The discontinuity a, at the

P-front must therefore satisfy Eq. (4), which will also hold for neighboring

elastic-plastic solutions where - exceeds - slightly. These solutions will

therefore start at c = p according to Case 2. In the limiting solution for
Po PE
- a T- the region C > tS is below yield and continuity requires this to hold in

neighboring elastic-plastic solutions, so that the plastic region must lie in the

range (p < pl < c2 < fS . The oonstruction of solutions begins exactly as forI Po P'L

-o > !-. For each terminal point C2 the strength of the discontinuity AT at the

shear front is determined by the requirement that I - 0 or 2 subject to the

limitation F ['pS+)] < 0. When the required value AT violates this condition a

*1 second plastic region for c > cS is needed, i.e. the configurations shown in

Figs. 10c and 12 are to be investigated.

c) Alternative Solutions and Considerations of Uniqueness and Existence.

In the absence of a uniqueness theorem it is vital to demonstrate that

configurations other than those in Figs. 9 to 12 can not led to solutions.

According to [5], Eq. (111-13) has for a given state of stress one root i, no

more no less, in each of the intervals p< < y. and cS p < IT. If a plastic

region ends aL a location pi in one of these intervals, the state of stress in

the remainder of the intervtl for p > cfi is necessarily neutral and uniform and

equal to the one at the terminal point pi of the plastic region. pi is therefore

the only solution of Eq. (111-13) for this state of stress in the particular

interval and no more than one plastic zone can therefore occur in any interval.
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In Section I-3 the possibility of discontinuous plastic shock fronts has

been indicated and their occurrence must be considered. It has been shown in (5]

that for finite values of V no plastic shock front can occur and, that there can

be no more than one plastic region in each of the intervals p < S '

CS < p < W. While discontinuous plastic shock fronts can not occur, values of

y and 0, where the conditions (111-31) are nearly satisfied, are encountered.

The asymptotic behavior of the solution near = in such cases was studied in

Section III-d and details are given in Section 5 of [5]. Theref'ore, combined with

elastic discontinuities at the P- and S-fronts, only the limited number of

configurations shown in Figs. 9 to 12 are possible.

The numerical analysis by digital computer was set up to investigate all

possible alternatives, i.e. the configuration according to Fig. 9 if the starting

value r1 satisfies Eq. (2) and any of the alternatives shown in Figs. 10 to 12 if

a1 satisfies Eq. (3). While none of the configurations shown in Figs. lOa-c ever

furnished a solution, no general proof permitting elimination of these cases is

available.

In Range I solutions which start accordi.4 to Case 1, have the configuration

of Fig. 9. For fixed values of V and V, these solutions form a family which

depends on one parameter, the selected starting value a1 > aE I. was found

that the surface load -o_ increases monotonically with a, until the limit, Ea. (4)

for a1 is reached, which leads to a limiting value of the surface load -L
1 k

p0However, no analytical proof of the monotonic increase of - is available.

The solutions found for Range I, which start according to Case 2, had always

the configuration shown in Fig. 12. These solutions also depend on one parameter,

viz. the stopping point C2 of the plastic region between Cp and S" If 2 is

selected only slightly larger than cl , the solution must obviously be very close
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Po ;PL

to the limiting one for Case 1, so that in such a case -- - and there is a

smooth transition from the configuration according to Fig. 9 to that of Fig. 12.

p0
The numerical analysis indicated that the surface load increases monotonically

with 2 As (2 approaches a limiting value the surface load goes to the limit
P0PO , for reasons explained in Section III-d.k

In Range II, only solutions which start according to Case 2 were found, their

configurations being as shown in Figs. 11 and 12. Figure ll applied for values
PE Po PL PE < - < -- where - is a bound. The corresponding family of solutions depends on

the stopping point t2 of the plastic region. The bound 0 is reached when the
P0

elastic region for t > (p becomes neutral. For larger values of - Fig. 12

applies and all statements made in Range 1 for this case apply.

In Range I as well as in Range II, combination of all solutions obtained
Po PE

numerically furnished one, and only onc solution for each value of - > -k

However, no general proof is available that this must be so. Existence and

uniqueness of the solutions obtained must therefore be demonstrated for each

combination of values V and -1 by actual computation of the families of solution
C P

according to the configurations ,jhown in Pigs. 9 to 12.



- 28 -

V RESULTS AND CONCLUSIONS.

a) Numericel Results for the Stresses.

For the numerical integration of the simultaneous differential equations

(111-18 to 21) in plastic regions, a Runge-Kutta forward integration scheme of

Fourth order, [7], was used. Computations were programmed in FORTRAN for an

IBM 7090 digitdl computer. Results for the stresses are given in Tables 1 to 16,

(to be ued in conjunction with Fig. 13), for all combinations of the parameters

V = 0, 0.125, 0.25, 0.35 and 1- = 1.25, 1.5, 2.0, 4.0, for five different values

of -k- • The values - have been selected such that there are a sufficient number

of results to permit interpolation in each of the configurations applicable for
V

each of the combinations of v and -

Cp 0
Po

In general there are three distinctive values of - for each case, which are
caldPE PL PH PE

called n an . The value - is the one up to which the solution is

entirely elastic. The distinctive value, P I defines the range PE Po L whereIt -k k - k -whr

a configuration with one plastic region applies according to either Fig. 9 or
Po PL

Fig. 11. For 7> -T the applicable configuration, Fig. 12, contains two plastic

regions.

As mentioned in Section III computational difficulties arise in the case
Po0  L Po

-> - when - becomes larger than about 5. In the integration the value of -2
k kk

obtained dependa on the selected end point ma of the lower plastic region. The
>1

details of the difficulties depend on the value of Poisson's ratio, V . For

V > CP 2 remains smaller than 4p but the computation becomes sensitive when C2

approaches . For V < the point is situated in the interior of the upper

plastic region, but the computation in the vicinity of j becomes very sensitive to-1

small changes in q2 . For v = , when 4 , both plastic regions approach ,

and the computation again becomes very sensitive to small changes in 2
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In either of these cases the sensitivity is due to a very rapid change, in the

proximity of c, in the quantity J1 This change is extremely rapid, nearly a

shock front, while other quantities near c approach limiting values smoothly.

Po

For values - where comqputational difficulties arise, the approximate

differential equations (A-5-7) derived in Appendix A must be used. One result,

designated by -- , requiring this type of analysis is given in the tables for

each comVination of V and V The stresses 0I , 2 and J1 for any higher value
C p P 001 + )  H H

of the surface pressure, say - = k ,are equal to aI + ' + ,

1 8 respectivelyp at locations c > , where the superscript H indicates

the respective values for pH given in the tables. The stresses for location

cp < p, and the quantities 0 and 8 everywhere, are approximately equal to those

for PH given in the tables.

The numerical results for the stresses are recorded in Tables 1-16. The

notation "Not Applicable" in the tables which may appear in Regions B or C,

indicates that the respective region does not occur at all for this value of p0 0

i.e. region A or D, respectively, or both extend as far as the S-front. For
PO PH

values < -= results may be obtained by interpolation (sometimes nonlinear),
kk
PO PH

while for - > 7 the procedure stated in the previous paragraph is to be used.

At points of transition in the configuration, i.e. for the loads pE and pL ' it

is seen that the upper and lower limits of one of the plastic regions are equal,

qClP 2 , or cp N c, indicating that there is actually no plastic region. These

values are given in the tables to permit interpolation for pressures exceeding

the respective value PE or pL "

b) Simplified Determination of Velocities and Accelerations.

The basic relations in Section II permit the numerical determination of

stresses and velocities or accelerations. The integration for the stresses must

be actually carried out to satisfy the boundary condition on the surface. The
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parallel integrations to find velocities and accelerations may be avoided, by using

the following relations, some of which are exact, while others are only good

approximations.

At a front of discontinuities, i.e. a P- or S-front, the accelerations are of

course infinite, but the changes in velocity are given - exactly - in terms of the

respective stress discontinuities,

at = = p AA = V n (V-l)

p pVsin 4

atp= AT (V-2)p V sin %

where the subscripts N, T indicate normal and tangential directions, respectively.

The value of A at a P-front can be taken directly from the numerical computations

for the stresses. The value AT can easily be computed and is given in the tables

listing numerical results.

In cons 'nuous elastic regions velocities do not change, while accelerations

vanish. Inelastic regions being reasonably narrow, one may disregard tangential

accelerations and changes in velocity, while the normal acceleration may be assumed

to be uniform in the region, giving a linear change in velocity. The total change

in velocity, AuN , in an inelastic region of extent AM, may be found from the change,

Aa, in the principal stress al at both ends of the region

Al I A I IVA.

KN - V sin m

where cm is an angle defining the location of the plastic region, say the mean of

the values cp at the end points. The acceleration is

.. I . N (V -4 )

- - - -N
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Except for values of Y very close to unity, the plastic regions are narrow,

so that the above approximations are quite satisfactory when determining shock

factors.I
c) Conclusions.

A method has been presented and numerical results have been tabulated for the

problem of a hal-space of a von Mises material subject to a step load progressing

with superseismic velocity, V > Cp

With regard to application of the results to protective construction, it

must be emphasized that the effects of a step load and those of a decaying

pressure differ necessarily. The results for the step load may be used

approximately for a decaying load only for points in the vicinity of the front

of the surface load and soon after passing of this front. The solution for the

step load approximates the solution for the decaying load reasonably within a

distance D from the front, Fig. 14. This distance is the distance in which the

peak pressure decays by about 10-20%.

It should be noted that the present report emphasizes numerical results.

More theoretical and academic matters, e.g. concerning uniqueness, are treated

in (5).
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APPENDIX A - Aproximate Forms of Equations (111-18-21 and 27).

Using the relations

8 -3 + (A-1)

A set of approximate relations will be derived to replace Eqs. (111-18-21 and 27)

in the vicinity of (9-+ where the numerical integration of the above equations

encounters difficulties. 1, A and t are to be considered small, but, to obtain

sufficient range of validity of this approximation the first two significant

terms in each variable are retained.

Replacing - - by the more convenient variable

_X (A-2)

where X, X are defined by Eqs. (11-34), (111-33), respectively. To the order

of the approximation used one finds

2 1 3V2 (.-%,)
2(+) 3(1-v) V2  

- J( (A-3)

Similarly, approximate expressions for cos 2y, sin 2y are

cos 2y - - 1 + 2112
(A-4)

sin 2y = - 211

Introducing Eqs. (A-l) to (A-4) into the determinantal equation (111-13) and the

differential equation (111-20) for B , retaining only appropriate terms yields

A2 + a (A-5)
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I
1. +-1L aA-6

do a5 (-

Combination of Eqs. (111-17, 18 and 19) permits formulation of a relation for

SL (A-7)

where

a,3 41I2- (1-5v) C + 4(1-2v') ~2 (A-8)

&P - 32(1+v) -214(1-2v') 9 (1748V') A -8(1-2V') CA (A-9)

3

a 3 -8(1-8y) - 4(1-2V') C + 4(1-8v) A - 214(1-2v') 94 (A-10)

% 4(+' + 1A + 3(1-2V') -9j3T? 2 (A-11)

a~-2(1-8Y') - 3(5-16%') C + 2( 3 -V (5-16V) 1A ++6-2) 2A (1)

+ 18 C2(1-2v) + 6(1-2V) 92A (A-12)

8 = 12+ 6A + A2  (A-13)

a7 -3(1-2v') 9 + II±-V) A + 2(1+v) If2 + (1-2V') CA (A-114)
3

a- - 14(i+v~) - A + 9TIf - 3(1-2V') 9 + 3 Af2 (A-15)

Equations (A-5 to 7) govern the solution in terms of the three unknowns T, A and

L> 0.

The derivative of Jl becomes

- 1-t - ] (s
1 + 9 2 ) L (A-16)

where
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a9 - 9(1-2V) + + (1+v) A + 6(+v) I + l+v) A2 + 6(1-2v) 19 +
3

+ (1-2V) A2 + 2(1+v) Alf (A-17)

0 =  S i.A - 2(1-2V) 9 + 267-?8

'L0 3 (A-18)

The quantities sI and s2 can be found from the yield condition and from the

relation P = 3 + A, once A is found,

It may be shown easily that Eqs. (A-5,6) reduce to their counterparts

presented in r5] when 9, A and I become small enough to permit retention of

leading terms only. Equation (A-7) also reduces to its counterpart in (5)

providing the relationship between t, I and A given by the simplified determinantal

equation (Eq. (3-35) of (5]] is employed.
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APPENDIX B - Solutions for v near p = S

For v = the asymptotic solutions valid for C < qS a can be obtained from

a simplification of the differential equations (A-5, 6 and 7) where, after sub-
1

stituticn of v = , only thc leading terms have been retained:

36 t + 1 & 36t2 (B-l)

A,= (6t + A) L(B2

= 1- 2Y L (B-3)

- In a manner similar to the oiie used in [5J, an asymptotic solution for

€ < 0 of these equations is

a = - 6/3 (B-4)

" (B-5)

Using this asymptotic solution for < T N and a double accuracy

integration of the original differential equations (I1-18 to 27) for f > S ,

solutions could be constructed successfully. As a typical case, Figs. 15 and 16

show the values of A and I as functions of e for V = 1.25 cp . There are only

two extremely narrow neutral regions between the two plastic rLgions and the

S-front. Further, the discontinuity in shear at the S-front becomes extremely

small, approximately zero.

i
I

I
I



-36-

REFERENCES

[i] Cole, J.D. and Huth, J.H., "Stresses Produced in a Half-Plane by Moving

Loads", Journal of Applied Mechanics, Vol. 25, Trans. ASME, Vol. 80,

pp 433-436, 1958.

[21 Miles, J.W., "On the Response of an Elastic Half-Space to a Moving Blast

Wave", Journal of Applied Mechanics, Vol. 27, pp 710-716, 1960.

[3) Sackman, J.L., "Uniformly Progressing Surface Pressure on a Viscoelastic

Half-Plane", Proc. 4th U.S. Congress of Applied Mechanics, June 1962.

[4j Workman, J.W. and Bleich, H.H., "The Effect of a Moving Load in a Visco-

elastic Half-Space", Office rf Naval Research, Technical Report 12,

Contract Nonr-266(34), November 1962.

[5) Bleich, H.H. and Matthews, A.T., "Step Load Moving with Superseismic

Velocity on the Surface of an Elastic-Plastic Half-Space", Office of

Naval Research, Technical Report 38, Contract Nonr-266(86), December 1965.

[6] Bleich, H.H., Matthews, A.T. and Wright, J., "Step Load Moving with Super-

seismic Velocity on the Surface of a Half-Space of Granular Material",

Air Force Weapons Laboratory, Contract AF.29(601)-6055, 1965.

[7) Ralston, A. and Wilf, H.S., "Mathematical Methods for Digital Computers",

John Wiley and Sons, Inc., January 1964.

[8) Mandel, J., "Ondes Plastiques dans un Milieu indefini ' Trois Dimensions",

Journal de Mcanique, 1, pp 3-30, 1962.



-37-

TABLE 1 (For definition of regions, see Fig. 13)

0.0 V = 1.25 Cp 9= 126.87 c0s = 1445"550 152.490

P21k PLPoPPE PE < P 0 < PL PL PL < Po < P H P11

_ PO i.41'k P 2.17 k 2.4O k p a 3.20 k p "8.02 k

a/k P 0.,
. - 0.876 - 1.58 - 1.73 - 1.73 - 1.73

. 12 /k 0 0 -0 0 0

J 1 /k - 0.876 -1.58 - 1.73 - 1.73 - 1.73

0 3.00 3.00 3.00 3.00 3.o0

8 36.870 36 36.870 _ _.870 36.870 36.87

1 Riot Applicable ot Applicable 14.290 140.290 14o.29°0

_2_"__ it 140.290 143.510 144.080

0l/k if"it ot Applicable - 1.86 - 1.89

• I "-0. 170 - 0. 211

0 J1/k

ft i -2.11 - 2.22.. .... 2.12- 2.69

0"46".290 48.60

AT/k - 1.17 - 1.11 - 1.05 - 0.536 - o.4o4

alk 6ot Applicable - 1.68 - 1.73 - 1.86 - 1.89

u 2/k m 0.096 0 0-.170 - 0.211

/k - 1.58 - 1.73 - 2.11 - 2.22

, 3.37 3.00 2.72 2.69

8 78.00' 74.230 64.810 62.50

__3 161.390 156.80 155.420 152.670 152.420

CP4 161.390 161.390 161.390 161.400 161.400

- 1.41 - 2.17 - 2.40 - 3.20 - 8.02

c2k 0.529 - 0.333 - 0.569 - 1.36 - 6.24

0 J1/k - 0.876 - 3.08 - 3.77 - 6.16 - 20.7

4 6.62 4.06 3.98 4.'Oi 4.04

g- 90 0o 900 900 900
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TABLE 2 (For definition of regions, see Fig. 13)

: 0.0 V = 1.5 Cp tp = 138.190 cpS = 151.870 157.36

PE iIP < -0 P PL "91, < po < pH PH

PO 1. 53k P - 1.85k p = 2.38k P = 2.71k p - 6.57k

1.18 1.44 -1.73 - 1.73 - 1.73

a'2/k 0 0 0 0 01

J1 k - 1.18 - 1.4 J - 1.73 - 1.73 - 1.73

_ 3_oo30oo 3.00 3.00 3.00 30.

e 48.19°  48.190 48.190 48.190 48.19

91 lot Applicable Not Applicable 148.900 148.900 148.900

_ 2 148.900 150.020 151.090

l/k Not Applicable - 1.78 - 1.83,

a2/k " - - o.0689 - o.124

o jk " " - .8.9 - 2.02

I " 2.88 2.81

" " 52,150 56.380

/k - 1.05 - 0.978 - 0.7.96 - 0.569 - 0.327

l/k lot Applicable - 1.63 - 1.73 -'1.78 - 1.83

a ' k 0.190 0 - 0.0689 - 0.124

o0 j/k " - 1.44 1.73 1.89 - 2.02

_____ 3.79 3.00 2.88 2.81

I e ,, 84.570 75.560 71.600 67.370

C03 163.480 161.720 158.880 157.890 157.340

T_4 163.48°  163.530 163.470 163.480 163.480
CIA - 1.53 - 1.85 - 2.38 - 2.71 - 6.57

T2/k 0.352 - 0.13F - 0.571 - 0.893 - 4.79

0 k
t Ji/ - 1.18 - 2.11 - 3.70 - 4.67 - 16.32

4.80 4.00 3.72 3 72 3.75
900 90 90 9 90
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TABLE 3 (For definition of regions, see Fig. 13)

= 0.0 V = 2.00 c p yp = 150.00 0 s = 159.30°  = 163.220

p , PE < 0 < PL PL -T L < PO < PH P11
p= 1. 6k PQ = 1.95k p -2.31k po x 2.72k p 0  6.6 )k

F 7 _l/k -1.44 -1.62 - 1.73 -1.73 -1.73
S 2/k 0 0 0 0

0 k

" J/k 1. 44 . -1.62 -1..73 -1.73 .  - 73

1 03. oo 3. oo 3.oo 3.0oo 3. oo

e 60.000 60.0 °  60.00' 60.00' 60.000

91 6ot Applica&lNot Applicable 157.95' 157.950 157.950

9D2 " " 157.950 158.660 158.95o

C/k Not Applicable - 1.77 - 1.78

m a2/k " " - 0.0495 - 0.0671
o- 1/85 - 1.89

0)0

________,, ,,_____ "2.92 2.90

T/k ,, "63.570 65.400

'-/k 0.831 -0.696 - 0.552 - 0.342 - 0.237

( lot Applicable - 1.69 - 1.73 - 1.77 - 1.78

o a2/k It O.0741 0 - O.0495 - o. O671.
]o Jl/ k ..... ..__ "__ _ _ _ _ _ _ _ _ _

t ___" - 1.62 -1.73 - 1.85 - 1.89

3.27 3.00 2.92 2.90

"84.16 78.590 75.020 73.260

93 166.540 165.080 163.840 163.310 163.220

Y4 166.540 166.560 166.540 166.540 166.540

al/k - 1.63 - 1.95 - 2.31 - 2.72 - 6.61

"2/k 0.189 - 0.161 - 0.523 - 0.932 - 4.84

- 1.44 - 2.40 - 3.47 - 4.69 - 16.39

350 3.43 3.43 3.44

90 9 0Q 90 900 90
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"4

TABI 4 (For defirition of regions, see Fig. 13)

v = 0.0 V = 4.00 cp cP = 165"520 s = 169.820 171"700
- I

PE PE < 0o < PL PL PL Po < PH PH

- p a 1.71k po 1.9k p0 - 2.17k po 2.60k P -7.12k

01ik - 1.66 - 1.71 - 1.73 - 173 - 1.73
Sa1k 0 0 0 0 0

0 J/k - 1.66 - 1.71 - 1.73 - 1.73 - 1.73

3.00 3.00 3.00 3.00 3.00

75.52' 75.520 75.520 .  750520 75.520 .

91 Not Applicable Not Applicable 169.610 169.610 169.610

'2 1 " 169.610 169.740 169.770

l/k ot Applicable - 1.74 - 1.75,

72k "- O.00145 - 0.018

~ ~1i --77 - 1.77

2.98 2.97
e t " 773340 77o89°

- O.429 - 0.341 - 0.259 - o.149 - o.116

l/k ot Applicable - 1.72 - 1.73 -'1.74 - 1.75

C. aJ2/k it 0.0171 0 - O.0145 - 0.18

- 1.71 - 1.73 - 1.77 - 1.77

___ 3,o6 3,00 2.98 2.97

B 86.930 84.i10 82.29' 81.740

3  172.38W0 172.02' 171.780 171.71' 171.700

4 172.380 172.380 172.380 172.380 172.380

,/k - 1.71 - 1.91 - 2.17 - 2.60 - 7.1l

k O.0455...... - 0.157 - o.1425 - o.856 - 5,37

31/k - 1.66 - 2.26 - 3.05 - 4.35 -17.9

3.16 3.13 3.11 3s/U 3.12

900 90 90 90 900
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I TABLE 5 (For definition of regions, see Fig. 13)

= 0.125 V = 1.25 cp 9P = 126.870 9S = 148.420 = 148.420I I,, ,

PE E < 0 0 PL PL PL <Po H P
p_ 1.72k .P =2 9 9 P= 2,36k P0 - 3.65k p - 6.14k

I1 /k - 1.36 - 1.75 -2.02 - 2.02 - 2.02

* o2 /k -0.194 - 0.2-1 - 0.289 - 0.289 - 0.289

"j/? 1.75 2.26 2.60 -2.60 2.60

I 3.00 3.00 3.00 3.00 3.00

36.870 36.870 36.870 36.870 36.870

91_I lot Applicablelot Applicable 140.380 140.380 140.380

92 it it _ 14o.380 148.320 148.420

1 k lot Ap j.cable - 2.64 - 5.15

S- 0.958 - 3.47

"J/ - 4.47 - 12.08

S" 2.72 2.99

I ,,t58.190 58.420

T - 1.24 - 1.23 - 1.16 - 0.0135 0

a1 /k Not Applicable - 1.90 - 2.02 -'2.64 - 5.15

o q2/k,, - 0.102 - 0.289 - 0.958 - 3.47

0 "
D - 2.26 - 2.60 - 4.47 - 12.08

3.59 3.00 2.72 2.99

_ _e 84.650 79,97 58.640 58.420

___ 160.900 158.620 156.590 148.490 148.420

94 160.900 160.830 160.800 160.850 160.850

1 /k - 1.72 - 2.09 - 2.36 - 3.65 - 6.14

L/k 0.165 - 0.248 - 0.541 - 1.80 - 4-34
o J./k I

- 1,75 - 2.83 - 3.65 - 7.51 - 15,1

1 4,85 4.06 3.85 4.14 4.25

900 90 90 90 900

! 1
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TABLE 6 (For definition of regions, see Fig. 13)

V = 0.125 V = 1.50 cp 'PP = 138.190 cps = 154.120 ( = 154.120

PE PE < -0o < PL PL PL < Po < PH PH
p __1.82k p =2.04k p0 = 2.35k p 3.26k p = 5.95k

01/k1  - 1,57 - 1.77 - 2.02 - 2.02 - 2.02

S0 2 /kj - 0.224 - 0.253 - 0.289 - 0.282 - 0.289

o J Vk k
-1'!k 2.02 - 2.28 - 2.60 - 2.60 - 2.60

3.00 3.00 '3.00 3.00 3.00

0 48.190 48.190 48.190 48.190 48.190

1 ot Applicablelot Applicable 149.050 149.050 149.050

_2 "_" 149.05 °  153.81 °  154.120

al/k "Lot Applicable - 2.46 - 5.14

2/k I it - 0.759 - 3.4

.... /k

UD 3i/ I It- 3.92 - 12.01

I! " " 2.80 2.99

it 6316°  64.120 1
-T/ 1.08 - 1.03 - 0.914 - 0o0569 0

1',/k lot Applicable - 1.91 - 2.02 -"2.46 - 5.14

o /t - 0.113 - 0.289 - 0.759 - 3,44

o1 J 1/k - 2.28 - 2.60 - 3.92 - 12.01

it 3.55 3.00 2.80 2.99

* 86.220 80.060 65.080 64.120

T4 162.890 162.940 162.89- 162.930 162.950

a1/ - 1.82 - 2.04 - 2-35 - 3.26 - 5.95

o'2/k 0.0259 - 0.218 - 0.546 - 1.44 - 4.16

SJ/k - 2.02 - 2.67 - 3.61 - 6.32 - 14.47

4.12 3.83 3.66 380 3.89

900 0 900 90 00
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TABLE 7 (For definition of regions, see Fir. 13)

v 0.125 V 2.00 Cp P = 150.00 0 S = 160"890 = 160.890

P <  o PL < Po p

I P= 1.91k P 2.13k p 2.29k P = 2.69k Po - 5.76k

Cl/k- 2.2 -2.02 - 2.02

, a2/k - 0.251 1 - 0.276 - 0.289 - 0.289 - 0.289

t~ i j/ki
", -I -2.28 -2.48 - 2.6o - 2.60 - 2.60

3_____ 00___ 3.00 3.00 3.003-0

8 60.00 60.000 60.00' 60.00' 60.0 °

91 ot Ap licable 158..6 158.160 158.160

(2 158.160 159.800 16o.890

11/k "_ _ Not Applicabl - 2.21 - 5.16

q ,2/k , 0.499 - 3.44

0 II" - 3.18 - 12.06

U " 2.89 3.00
e ,,,"6 6 5 9 °0 7 0 8 9 0

/k - 0.838 - 0.733 - o.643 - 0.257 0

al/k Iot Applicable - 1.98 - 2.02 - 2.21 - 5.16

So 2 /k - 0.224 - 0.289 - 0.499 - 3.44

o - 2.48 - 2.60 - 3.18 - 12o06

VI 3.19 3.00 2.89 3.00

" 85 47o 81.7k°  75.200 70.890

P3 166.OO°  164.730 163.73' 162.00O 160.89°

4 166.OO 166.020 166.01o l 166.020 166,040

ol/k - 1.91 - 2.13 - 2.29 - 2.69 - 5.76

p av'k - 0.115 - 0.348 - 0.507 - 0.902 - 3.99

o~ j1/ - 2.28 - 2.94 - 3.14 -4.60 - 13.86

- 3.52 q. 4 3.39 3.44 3.52

goJoQ 900 900 9C0  90- -
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TABLE 8 (For definition of regions, see Fig. 13)

0 = .125 V = .0 c. Cp = 165"52 cs = 170.580 c 170.580

PE I PE < 0o P PL PL 0 <  PH

P = 2.00k p°  2.09k p - 2.16k p 0 - 2.30k p 5.44k

_ I - L_- 2.00 - 2.02 - 2.02 - 2.02

112/k - 0.280 - 0.286 - 0.289 - 0.289 -0.289

o Jl/k - -,5.57 - 2.60 - 2.60 -2.60

_ ... 3.00 3.0 3. 3.00 3.00

75520 75.520 75.520 75.520 7 5.52° .

(1 jot Applicable ot Applicable 169.870 169.870 169.870

2 I ,, " 169.870 170.200 170.560

a1/k Not Applicable - 2.09 - 5.16

p a2/k " " - 0.364 - 3.42

O J1/k It

-1 
- 2.81 - 12.00

" - 2.97 3.00

A c ,, 77,.920 80.60P

A0/k - o.430 - 0.360 - 0.304 - O.160 0

ai/k lot Applicable - 2.01 - 2.02 -'2.09 - 5.16

o (a/k ,,_- 0.273 - 0.289 - 0.364 - 3.42

- 2.57 - 2.60 - 2.81 - 12.00

_,, _ 3.o4 3.00 2.97 3.00

__,, 87.550 85.640 83.240 80.600

(P393 171.960 171,590 171.310 170.960 170.580

P4 171.960 1 171.96' 171.96' 171.960 171.960

0l/k - 2.00 - 2.09 - 2.16 - 2.30 - 5.44

02/k - 0.246 - 0.341 - 0.411 - 0.555 - 3.70

0 k,g './k - 2.52 - 2.8o - 3.01 - 3.44 - 12.87
d)-

3.12 3.11 3.11 3.11 I 3.14

9 900 9 90 900 900
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TABLE 9 (For definition of regions, see Fig. 13)

= 0.25 V = 1.25 6 = 687' YS = 152.49' i43.40

PE PE< po < PL PL < Po < PR PH
pQ -2.5o k po -2.61 k PO -2.65 k PO -3.84 k .110-5 k

cl/k - 2.43 - 2.55 - 2.60 - 2.60 - 2.60

-< " /k - O.810 - 0.850 - o.866 - o.866 - o.866

0 J1/k - 4.05 - 4.25 - 4.33 - 4.33 - 4.33

300 3.00 3.00 3.00 3.00

e 36.870 36.870 36.870 36.870 36.870

Not Applicableot Applicable 139.390 139.390 139.390

9p2 c 139.390 142.510 143.3960

0_/k _ot Applicabl - 3.51 - 10.1

I K p 2/k ,,_- 1.81 - 8.35
0 ,j/

ft I___ 7.08 -26.8

"f " 2.82 3.00

I --- U " 47.460 53.4°

_/k - 1.36 - 1.35 - 1.35 - 0.851 - 0.550

I al/k 1ot Applicable - 2.57 - 2.60 - 3.51 - 10.1

o a2 /k - 0.830 - 0.866 - 1.81 - 8.35
J1k - 4.25 - 433 - 7.08 -26.8

1 
--

/ I
________ 3.07 3.00 2.82 3.00

88,600 88.110 77.52' 71.60

L L - ., 59.U. ,

'4 160.610 160.610 160.590 160.880 6.Ol °

cl/k - 2.50 - 2.61 - 2.65 - 3.84 - 10.5

Sa 2 k - 0.735 - 0.851 - 0.897 - 2.03 - 8.69

0 J1 /k - 4.O5 - 4.38 - 4.50 - 8.07 - 28.1

3.28 3.21 3.19 3.74 4.12

o 900 90 90 90 900
* . . ..



- --6--

-16-

TABLE 10 (For definition of regions, see Fig. 13)

= 0.25 V = .50 Cp 'p = 138,19° 0S - 157.360 = 150.200

PEPE < PO <L P L JPL<P 0 < r.,I P
P -2.48k P0 -2.63k p - 2.69k p -4.31k p -1.6k

- 2.39 - 2.54 - 2.60 - 2.60 - 2.60

S 0.797 -o.846 - 0.866 - o.866-
01- 3.98 - 4.23 - 4.33 - 4.33 - 4.33

3.00 3.00 3.00 3.00 3.00

- 48.190 48.190 48.190 48.190 48.190

'P1 Not Applicable Not Applicable 148.06°  148.060 148.060

902 " i 148.060 150•130 150.200

" Not Applicabl( - 3.99 - 11.25

p4 , " - 2.27 - 9.53
0 Jk1 , , , - 8.51 -30.31

-" " "2.91 3.00

S"58.510 60.210

- 1.13 - 1.09 - 1.07 - 0.523 - 0.425

0l/k Not Applicable - 2.56 - 2.60 - 3.99 - 11.25

jcjk - 0.820 - 0.866 - 2.27 - 9.53
0 JI/k i
• J3/k"- 4.23 - 4.33 - 8.51 30.31

__" _3.09 3.00 2.91 300
e 87.610 86.540 76.21' 74.52°

3 162.95°  162.140 161.78 158.830 158.430

_4 162.95 °  162.950 162.950 163.090 163.130

a1/k - 2.48 - 2.63 - 2.69 - 4.31 - 11.60

L a/k - 0.705 - o861 - 0.925 - 2.50 - 9.78

J1/k - 3.98 - 4.43 - 4.61 - 9.47 - 30.00

0 4 3.28 3.26 - 3.66 3.78
900 90° goo oo g0o
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TABLE 11 (For definition cf regions, see Fig. 13)

V = 0.25 V = 2.00 Cp (p = 150.000 cs = 163.220 ( 158120

PE PE < Po < PL PL PL < Po < PH
-Pa s 2.52k P0 -2.61k P -2.68k )--4.lik P 1 1fl*.4k

k - 2.46 - 2.54 - 2.60 - 2.60 - 2.60

2/k - 0.820 - o.84 - o.866 - o.866 - o.866

0 - 4.10 - 4.23 - 4.33 - 4.33 - 4.33

300 300 3.00 3.00 3.00

60.000 60.000 60.00' 60.000 60.00'

(Pl Not Alplicabl Not Applicabl 157.220 157.220 157.22'

92 it It 157.220 158.110 158.120

l/k i t Not Applicable - 4.20 - 11.16

.c.2/k _ _" - 9 . 3 -2 .h 7
0 k

" " " - 9.12 - 30.02

- ,, ,, ,, - 2.96 3.00

0 i U67.1460 68.120

A -/k 0-852 - o.811 - 0.771 - 0.672 - 0.3o6

1i/k Not Applicable - 2.56 - 2.60 - 4.20 - 11.16

q2 ak ,, - 0.818 - o.866 - 2.47 - 9.43

0 "/- 4.23 - 4.33 - 9.12 - 30.02

0 3.10 3.00 2.96 3.00

. it 88.170 86.440 78.980 78.32'

90 I -4 e I-0 1 .7co i4c 0 7 00 "4 0 0

J 4 166,21 °  166.210 166.210 166.260 166.270

1'l I - 2.52 ., 2.61 - 2.68 - 4.41 - 11.38

11/ - 0.759 - 0.848 - 0.923 - 2.63 - 9.60

J- k - 4.10 - 4.36 - 4.58 - 9.77 - 30.69

3.22 3.20 .19 3.40 3.44
0 90 90o  900 900 900

- -I_ _ _ II
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TABLE 12 (For definition of regions, see Fig. 13)

v= 0.25 V 4 o,0 cp p =165"52' YS = 171.700 C 169"260

PnE PE < Po < PL PL PL < Po < PH PH
P- 2.56k p c 2.62k p 2.63k po 4.36k p0 = 1.3k

- - 2.56 - 2.59 - 2.60 - 2.60 - 2.60

C 2/k - 0.854 - 0.863 - .866 - 0.866 - o.866

0 J/k - 4.27 - 4.31 - 4.33 - 4.33 - 4-33

0 3.00 3.00 3.00 3,00 3"00

75.520 75.52 75.520 75.520 75.520

i ot Applicable ot Applicable 169. 1 4 0 169.140 169.140

92 if 169.140 169.260 169.260

al/k it _ _ ot Applicable - 4.29 - 11.22

0 2/ k it - 2.56 9.49

"f " - .4o- 30.2

- -t 2.29 3.00
00it, iti 79.05 ° 0_ 2. b

A -/k o.431 - 0.388 - 0.371 - 0.337 - o.147

CI/k Not ApplicabZ - 2.59 - 2.60 - 4.29 - 11.22

C - o.859 - o.866 - 2.56 - 9.49

0 J/kJ 1' - 4.31 - 4.33 - 9.40 -3o.2.

S3.01 3.00 2.99 3.00
....... 88.490 87.880 84.350 84.140

(3 172.270 172.110 172.050 171.780 171.760

94 172.27 °  172.270 172.270 172.270 172.270

- 2.58 - 2.62 - 2.63 - 4,36 - 11.3

qa/k 0.837 - 0.877 - o.891 - 2.61 - 9.55

JIk - 4.27 - 4.39 - 4.43 - 9.61 - 30.42

.8 . 3.06 3.o6 3.06 3.10 3.11

I 900 90°  90 900 900
__ : • j ,
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TABLE 13 (For definition of regions, see Fig. 13)

v= 0.35 V = 1.25 cp cp = 126.870 S = 157.40 138.270

PE PE < po0 < PL PL PL < Po < PH PH

- ..... p u 3.48k po - 4.43k p0 . 6.08k p0 M 6.72k P0 - -1.4k

ik - 375 - 3.75 - -75 -3.75

-2/ -2.02 - 2.02 -2.02 -_2.02_2.0

J/ 7-79 - 7,.79 - 7.79 - 7.79 - 7.79

- .00 3.00 3.00 3.00 3-00

9 36.870 36.870 36.870 36.870 36.870
( '136.870 136.870 136o87°  136.870 136.870

1 36.870 137550 138.100 138. 180 138.270

01/k Not Applicable - 4.57 - 6.08 - 6.69 - 11.31

a2/k - 2.84 - 4.35 - 4.97 - 9.58

0 1'_ - 10.23 - 14.76 - 16.61 - 30.48

it,, 2.94 2.93 2.94 2.99

i t 42.490 44.800 45.790 48.090

/k - 1.18 - 1.18 - 1.22 - 1.18 - 1.08

1l/k lot Applicable ot Applicabl Not Applicabi - 6.69 - 11.31

O 1 2 /k ,, ,, " - 4.97 - 9.58
0 IIt- 16.61 - 30.48

,, _ ,,_ 2.94 2.99
0 89.010 86.710

CO I'- __ io 4.1 nco
I j - : LJ-*.Uf 1 ,

p4  "161.97' 162.000 162.110

a1/k - 3.48 - 4.43 - 6.08 - 6.72 11.39

p 2k - 2.29 - 2.98 - 4.35 - 4.,98 - 9.63

0 JkJ 1k - 7.79 - 10.23 - 14.76 - 16.68 - 30.71

2.06 2.47 2.93 3.02 3.24

0 900 90Q 900 goo 900
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TABLE 14 (For definition of regions, see Fig. 13)

v= G35 V = 1.50 c. (Pp = 138.190 c = 161.32°  = 146.310
kL PO<P

PEPE <p< P L~ PL L P0<P H
____ PO= 364 Pg. -4.47k P- 5.23k po "6.o9k p0 o 11.2k

- 375 - 3.75 - 3.75 - 3-75 - 3.75

-k _ 2.02 - 2.02 - 2.02 - 2.02 -2.02

* Jji - 7.79 - 7.79 - 7-79 - 7.79 - 7.79

3.00 3.00 3.00 3.00 3.00

, 48.19o  48.190 48.190 48.190 48.190 [
'i 145.690 145.690 145.690 145.690 145.690

92 145.690 146.010 146.150 146.250 146.310

171/k Mot Applicable - 4.51 - 5.23 - 6.06 - 11.16

0 O2/k - 2.79 - 3.51 - 4. 3 - 9.43

i0 -10.O8 - 12.23 - 14.73 - 30.00

2.97 2.96 2.96 2.99

6 50.85 52.500 53.98 °  56.18°

AT/k - 1.08 - 1.o6 = 1,05 - 0.985 - 0.880

11/k lot Applicablelot Applicabl Not Applicable - 5.4 - 11.16

S a jk 9 .43

0 3/k ,
1- 14.o5 30.00

- ,, ,, ,, .9 2.6

,,88.670 86.46

93" 164.330 163"-.98' 163.480

4 , " 64.qq° 164.,13°  164.380

1l/k - 3.64 - 4.47 - 5.23 - 6.09 - 11.23

A 1ak - 2.13 - 2.83 - 3.51 - 4.,36 - 9.47

0 ri0 - 7.79 - 10.08 -12.23 - 4.131 - 30.21

2.61 2.75 2.96 3.03 3.21

0 900 90Q 900 900 9 0
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TABLE 15 (For definition of regions, see Fig. 13)

v = 0.35 V = 2.00 C cP = 150.000 pS = 166.100 155."20

PE PE < Po < PL PL PL < P0 < PH PH
po=3.72k po -4.34k p - 4.94k p - 5.71k p 11.8k

- 3.75 - 3.75 - 3.75 - 3.75 - 3.75 -_-

___2 . 2.02 - 2.02 - 2.02 - 2.02 -2,02
0 i 7.79 - 7.79 - 7.79 - 7.79 - 7.79

3.00 3.00 3.00 3.00 3.00

600 600 600 600 600

0 0 0 0 0
1 155.21 155.21 155.21 155.21' 155.21

92 155.21 °  155.300 155.350 155.390 155.42a

Not Applicable - 4.36 - 4.94 - 5.69 - 11o75

q2a/k o
2'k "___ _ -2.63 - 3.20 - 3.96 - 10.02

0 Jl/k it - 9.6o 11.37 - 13.60 31.78

0 ,, 2.99 2.99 2.98 3.00

" 61.520 62.590 63.580 65.350

A /k - 0.848 - 0.820 - 0.801 - 0.732 - 0.634

01/k ot Applicable Not Applicable Not Applicable - 5.69 - 11.75

o ( 2 /k - 3.96 - 10.02
0

" " - 13.60 - 31.78

- . .... "2.98 3.00

,,88.63 86.8 0

CP3 "167-58" 167-3 1. ,.,,.
Vt 1b.5 io t . 17

Y4 VI 167.580 167.580 167.590

-/k _ 3.72 - 4.34 - 4.94 - 5.71 - 11.80

(2k - 2.06 - 2.64 - 3.20 - 3.97 - 10.05

-Ti/ - 7.79 - 9.60 - 11.37 - 13.67 - 31,93
0,- - - ,

2.87 2.95 2.99 3.05 3.14

e 900 90o 900 90 90
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TABLE_ 16 (For definition of regions, see Fig. 13)

= 0-35 V =4.0 e P 165.52' YS 173"100 167-999

PE PE < PO < PL PL PL < Po' < I1 PH
_ po-3.75k p 4h .5 0-k 6.,,82k

- 3.75 - 3-75 3.75 - 3.75 - 3.75

q2/k - 2.02 - 2.02 -2.02 - 2.02 - 2.02

0 J,/ .o1. _ - 7.79 - 7.9 7.79 - 7.79 - 7.79

3.00 3.00 3.00 3.00 3.00
8 75.52' 75.520 75.520 75.520 75.520

'i 167.970 167.970 167,970 167.970 167.970

c2 167.970 167.980 167.980 167.9930 167.994°

Cl/k ot Applicable - 4.15 - 5.08 - 6.81 - 11.25

q 2" - 2.42 - 3.35 - 5.08 - 9.51
0 J/k - 9.00 -11.8 - 16.97 - 30.27

8,3.00 3.00 3.00 p.99

__" __ 76.030 76.840 77.570 77.96°

AT/k - o.432 - o.418 - 0.394 - 0.332 - 04310

Cl/k ot Applicable ot Applicable ot Applicabl - 6.81 - 11.25

oC 2/k" - 5.o8 - 9.51
o Jl/k

"'' -16.97 -30.27

- " " 3.00 2.99

- "____ _ ). 8864°  W8.240
CP3  " " 173.330 173.250 173.23

Y4  " 173.330 173•33 0 173.330

a/k - 3.75 - 4-.15 - 9.o8 - 6.82 - 11.26

m k - 2.03 - 2.42 - 3.35 - 5.09 - 9.52

0 
- 9 00

-. - 9.00 -18 - 17.01 - 30.32-4 2.98 2.99 3.00 3.03 3.03

- -.L. ... j 900 90 90 90° 900



I -53 -

Ip p~Vt) -bVELOCITY V

II 
x

F IG .2



i -55-

P =PH (Vt -X) V____

4x

Ye

sI

F: FIG 3

pPPH {Vt -X)

ILILtk
F I Gx



- 57 -

- SURFACE

S-FRO0NT

SOFOR

A N

FIG 5



I59

S - - FRN

P- FRONT

FiG .6

CONFIGURATION OF ELASTIC SOLUTIONS



V/cr

4.

3.RANGE I 'RANGE 3'j

2.0

~ -V = It

00.1 0.2 .30.4 0.5 v

0 SOLUTIONS GIVEN IN SECTION 5

F4 1-



-63

l PE/k

4.-

TEQ.(4-6) RANGE ]I

3 BOUNDARY BETWEENRANGES IG.-

2.G

1.0

Lu 1.1 1.3 .4 15Vo

UPPER BOUND Pe/k TO ELASTIC SOLUTIONS

-87-

--7.---



-65-

p-l,

NEUTRAL REGION

112 x \~

P- FRONT

F IG .9

P-FRONT

F IG 100I

. ....... A41p



1 -67-

1Po

NEUTRAL REGION

-P-

NETA RGO

F -uG-vO



-69-

ELASTIC REGION

P-FRONT

NEUTRAL REGION

S-FRONT

c P-FRONT

F IG 12



,1: - 7' -

L

[p

POo

Noethtnt l -gonshnaculyocrfralteaeso--•

1~1 REGION D

(4

1 PLASTIC REGION

E

I,

L
F IG 13

L Referred to in Tables 1 to 16

Noe ha ntall rgosshown actually occur for all the cases of0

L
1'.
L



- 73 -

D

0.8 PoTO9PPEAK PRESSURE Po

REGION OF GOOD
APPROXIMATION

FIG . 14



- 75-

.,-V O
4

o

0

p
0

i •

U0

I ,

0 C) A~

I 9

d O -

I

C~C

o

I



0 0

P4 --
0

04

o r4

oo
*ri

0 40)

4,4
0)

i00

a.-

to 0 LO

0 P- >

0 007

I. -

I L~d



Unclassified
SecuritV Classification

-, DOCUMENT CONTROL DATA- R&D
(Security classification of fil*, body of abstract and indexing annotation must bo entered when the overall report a4 claSa4i3 ed)

1. ORIGINATING ACTIVITY (Corporate author) 2ic. RE PORT SECURITY CLASSIFICATION

Paul Weidlinger, Consulting Engineer Unclassified

New York, New York 2b GROUP

3. REPORT TITLE

"STRESSES IN AN ELASTIC-PLASTIC HALF-SPACE DUE TO A SUPERSIESMIC STEP LOAD"

4. DESCRIPTIVE NOTES (Type of report and Inctlive datea)

S. AUTHOR(S) (Last name. first name, initial)

(L Matthews, A. T. and Bleich, H. H.

. REPORT DATE 78. TOT4L NO. OF PAGES 7b. NO. OF REFS
March 1966 77 8 ,

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

TDA-3-069-Amc-8(R) ITechnical Report No. 4ib. PROJECT NO.

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
thiu report)

d.

10. AVAILABILITY/LIMITATJON NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPO*;ORING MILITARY ACTIVITY

U.S. Arnm Ballistic Research LaboratoriesJAberdeen Proving Ground, Maryland

13. ABSTRACT

ti The plane strain problem of a step load moving with uniform superseismic velocity

V > c on the surface of a half-space is considered for an elastic-plastic

materlal obeying the von Mises yield condition.

Using dimensional analysis the governing quasi-linear partial differential

equations are converted into ordinary nonlinear differential which are solved
numerically using a digital computer. To overcome computing difficulties
asymptotic solutions are derived in the vicinity of a singular point of the

differential equations.

Numerical results are presented for a range of selected values of significant

nondimensional parameters, i.e. of the surface load p A. of Poissons ratio v

and of the velocity ratio V/c .-

L

DD tJA 1473 Unclassified
Security Classification

.5



Security Classification
1.LINK A LINK B LkNY C

KEY WORDS _ T.R. W
ROLE ROLE WT ROLE WT

Stresses in Elastic-Plastic HaUf-Space
Superseismic Step Load
von Mises yield condition
Wave PropaM;ation

'T

.1

-I' INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LIMITATION NOTICES, Enter any lim-
of the contractor, subcontractor, grantee, Department of De- itations on f-ther dissemmation of the report, other than those
tense activity orother organization (corporate author) issuing imposed by security classification, using standard statements
the report. such as:
2a, REPORT SECUIATY CLASSIFICATION: Enter the over- (1) "Qualified requesters may obtain copies of this

* all security classification of the report. Indicate whether report from DD'"
"Restricted Data" is included.- Marking is to be in accord-
ance with appropriate security regulations. (2) "Foreign announcement and dissemination of this

2b. GROUP: Automatic downgrzdlng it specified in DoD Di- report by DDC is not authorized. "

rective 5200. 10 and Armed Forces Industrial Manual. Enter (3) "U. S. Government agencies may obtain copies of
the group number. Also, when applicable, show that optional this report directly from DDC. Other qualified DDC
markings have been used for Group 3 and Group 4 as author- users shall request through
ized.

3. REPORT TITLE: Enter the complete report title in all (4) "U. S. military agencies may obtain copies of this
capital letters. Titles in-all cases should be unclassified. report directly from DDC Other qualified users
If a meaningful title cannot be selected without classifica- shall request through
tion, shiow title classification in all capitals in parenthesis ,e

immediately following the title. ,_•

4. DESCRIPTIVE NOTES: If appropriate, enter the type of (5) "All distribution of this report is controlled. Qual-
report, e.g., interim, progress, summary, annual, or final. ified DDC users shall request through
Give the inclusive dates when a specific reporting period is to• " - covered.
cve If the report has been furnished to the Office of Technical
.5. AUTHOR(S): Enter the name(s) of author(s) as shown on Services, Department of Commerce, for sale tc the public, Indi-
or in the report. Enter last name, first name, middle initial. cate this fact and enter the price, if known.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement. 11. SUPPLEMENTARY NOTES: Use for additional explana-

6. REPORT-DATE' Enter the date of the :a-port as day, tory notes.

month, year, or month, year. If more than o-. date appears 12. SPONSORING MILITARY ACTIVITY: Enter the name of
on the report, use date of publication, the departmental project office or laboratory sponsoring (pay-

7a. TOTAL NUMBER OF PAGES: The total page count ing for) the research and developmnt. Include address.

should follow normal pagination procedures, i.e., enter the 13. ABSTRACT: Enter an abstract giving a brief and factual

number of pages containing information summary of the docuiment indicative of the report, even though
Iit may also appear elsewhere in the body of the technical re-

7b. NUMBER OF REFERENCES. Enter the total number of port. If additional space is required, , continuation sheet
references cited in the report. shall be attached.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter It. is highly desirable that the abstract 3f classified rt-
the applicable number of the contract or grant under which ports be unclassified. Each paragraph of the abstract shall
the repo-t war writn end with an inuication of the miitary security classifcatiodi

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate of the information in the paragraph, represented as (TS), (S),
military department identification, such as project number, (C), or (U).
subproject number, system numbers, task number, etc. There ks no limitation on the length of the abstract. How-

* 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- ever, the suggested length is from 150 to 225 words.

cial report number by which the document will be Identified 14. KEY WORDS. Key words are technically meaningful terms
and controlled by the originating activity. This number must or short phrases that characterize a report and may be used as
be unique to this report. index entries for cataloging the report. Key words must be
9b. OTHER REPORT NUMBER(S): If the report has been selected so that no security classification is required. Iden-
assigned any other report nu9bers (either by the originator fiers, such as equipment model designation, trade name, nili-
or by the sponsor), also enter this number(s) tary project code name, geographir location, may be used as

~key words but will be followed by an indication of technical
context. The assignment of links, rules, and weights is

optional.

Unclassified__S euity Classification

7 7-


